Geoinformation for Humanitarian Aid

What we do

A pivotal supplementation for official geodata and remote sensing data, user-generated spatial data such as those provided by the OpenStreetMap project or the Social Web are becoming ever more important for efficient crisis management. By mashing different datasets, the resulting situation intelligence enables humanitarian relief organizations and first responders to quickly gain awareness of the situation in the aftermath of a disaster event.

This information also plays a pivotal role in the efforts to mitigate risks, prepare for events, and limit their potential effects. In cooperation with users and relief workers, we are developing innovative processes and services for new analysis methods to better use this potential of different data sources. You can find our research papers in the publications list.

Humanitarian OSM Stats

Humanitarian OSM Stats is a project which aims to present statistics and numbers about mapping in OpenStreetMap (OSM) for humanitarian purposes.

The Humanitarian OpenStreetMap Team (HOT) applies open mapping in OSM towards humanitarian action and community development. The open-source Tasking Manager hosted by HOT ist the major tool used to coordinate the efforts of thousands of remote mappers. The statistics rely on a dump of the Tasking Manager database, which is provided by HOT once a week.

On Humanitarian OSM Stats statistics of three main subject areas are presented:

Tasking Manager

This part shows statistics of activity based on sessions. You get the number of projects, contributors and countries involved. On a map the mapping activity for each project on a monthly basis is visualized. Further graphs give insight to the mapping activity and status of the projects.

OpenStreetMap

In this part contributions to the OSM database analyzed with OSHDB are presented. You see the actual amount of buildings and highways added to OSM in general compared to those added via the Tasking Manager.

Users

In this section Humanitarian OSM Stats shows the community behind the mapping and who is contributing how much. One graph shows how many percent of the userbase were active on at least x days. Another shows how many percent of users combined do how much of the total work. How experienced the users that mapped were is shown, too.

Collaboration HeiGIT - German Red Cross

The partnership between the German Red Cross (DRK) and HeiGIT was founded in 2017 with the aim to develop GIS solutions for the implementation of humanitarian activities of the Red Cross and Red Crescent Movement. At the same time, the knowledge gained from this partnership is incorporated into the work of HeiGIT. A central component of the cooperation is the regular exchange between the HeiGIT team and the DRK about the current operational requirements, problems and new findings in the field of humanitarian aid as well as about the support in disaster prevention and forecast-based financing. The cooperation is strengthened by the joint project “25 Mapathons” – financed by the Klaus-Tschira Foundation.

In the course of the cooperation between the DRK and HeiGIT, a specialist office for geoinformatics financed by the Klaus Tschira Foundation could be created within the team International Cooperation of the DRK.

Missing Maps

Missing Maps is an initiative of various humanitarian organizations with the goal of mapping missing map information in areas threatened by (natural) disasters in OpenStreetMap (OSM) even before a disaster occurs. This geodata can then be used for prevention measures in the run-up to natural disasters or, in the event of a disaster, to support the work of local and international aid organizations. Both HeiGIT and the DRK are members of the Missing Maps Initiative.

25 Mapathons

The project “25 Mapathons”, funded by the Klaus Tschira Foundation, aims to raise internal awareness of the potential of geoinformatics within the DRC and to collect relevant geodata for DRC projects. For this purpose, HeiGIT and the DRK organize events for DRK divisions and the Youth Red Cross in order to give an insight into the international work of the DRK and to collect map data for operational areas. This takes place in the form of jointly organized mapathons, events in which helpers jointly map areas not previously recorded in OSM.

Evaluation of the Mapathons

Mapathons are intended to generate high-quality data on the one hand, and to motivate volunteers to participate in OSM, especially in the field of humanitarian aid, on the other. Ideally, the Mapathon will arouse interest and lead to participants becoming permanently involved as contributors to OSM. Therefore, an evaluation of the Mapathons is planned to find out which type of Mapathon implementation can motivate participants for mapping for OSM in the long run. Since individual previous knowledge and interests – such as experience in geoinformatics or an affinity for technology – influence the results, the analysis will check for these factors.

Forecast-based financing

Forecast-based financing offers a new approach to humanitarian aid. Based on weather forecasts and risk analyses, predefined measures are initiated as soon as a specific threshold is reached. The goal of these measures is to minimize the consequences of e.g. extreme weather events and to save human lives by taking precautionary measures instead of limiting oneself to the help after the occurrence of the disaster. In December 2020, the Anticipation Hub will be launched – a platform for the exchange of information between the forecast-based financing community and HeiGIT will join as a partner.

openrouteservice for Disaster Management

The routing service enables users to plan routes based on up-to-date OpenStreetMap data, all while taking into account disaster-related road conditions. This way, the on-site response teams always have access to continuously updated information about reachability and navigability of the surrounding roads.

Avoid Blocked Roads

After the 2015 earthquakes in Nepal, the global OpenStreetMap community mapped up to 800 road kilometers – every hour! This included information about blocked and impassable roads. We render these data usable for evacuation and response planning.

Hourly Updates

We currently provide hourly update intervals for geodata of all of Africa, South America, and South Asia. During larger disasters affecting regions not yet covered by the service, the addition of new areas can be requested.

Leverage Fleet Scheduling for Disaster Response

A complex example of routing optimization would be the distribution of goods by a fleet of multiple vehicles to dozens of locations. Visit our example of real-world scenario of distributing medical goods during disaster response.

Healthcare Access Analysis in Madagascar

The access to health facilities can be highly unequal within a country. Consequently, some areas and communities are more vulnerable to disasters effects than others. This notebook gives an overview on health sites distribution and the amount of population with access to those by foot and by car for Madagascar.

Machine Learning and Humanitarian Mapping

Nowadays, Machine Learning and Deep Learning approaches are steadily gaining popularity within the humanitarian (mapping) community. With our cooperating partner team at GIScience Research Group Heidelberg University we investigated the potential of Deep Learning in combination with MapSwipe’s crowdsourcing approach. To this end, we propose a novel workflow to combine deep learning (DeepVGI) and crowdsourcing (MapSwipe). Our strategy for allocating classification tasks to deep learning or crowdsourcing is based on confidence of the derived binary classification.

Deeply learning from satellite imageries

Deep learning techniques, esp. Convolutional Neural Networks (CNNs), are now widely studied for predictive analytics with remote sensing images, which can be further applied in different domains for ground object detection, population mapping, etc. These methods usually train predicting models with the supervision of a large set of training examples.

Fill data gaps

The scarce availability of accurate and up-to-date human settlement data remains a major challenge, e.g., for humanitarian organizations. We investigate the complementary value of crowdsourcing and deep learning to fill the data gaps of existing earth observation-based (EO) products.

Interaction between human beings and machines

VGI data from OpenStreetMap and the mobile crowdsourcing application MapSwipe which allows volunteers to label images with buildings or roads for humanitarian aids are utilized. We develop an active learning framework with deep neural networks by incorporating both VGI data with more complete supervision knowledge.

Additional Services

Cooperations

The Team

Melanie Eckle

Research Associate

Benjamin Herfort

Research Associate

Dr. Sven Lautenbach

PostDoc Researcher

Sabrina Marx

Research Associate

Publications

This link will take you to an overview listing all our academic articles: Publications Geoinformation for Humanitarian Aid.